引用格式: 夏绪伟.缺陷召回制度研究—— 以龙门起重机为例[J].标准科学, 2025(6): 109-115.

XIA Xuwei. Research on the Defect Recall System—Taking Gantry Cranes as an Example [J]. Standard Science, 2025(6): 109-115.

缺陷召回制度研究

——以龙门起重机为例

夏绪伟1,2

[1. 重庆市特种设备检测研究院; 2. 国家市场监督管理总局重点实验室(西部复杂环境机电设备安全)]

摘 要:【目的】针对我国特种设备安全管理体系召回中的关键环节,以龙门起重机为研究对象,系统探讨了缺陷产品召回制度的构建与实施机制,以期为完善我国特种设备安全监管体系提供理论支撑与实践参考。【方法】通过分析国内外特种设备召回制度的现状,结合龙门起重机特有的结构特征与风险要素,基于区块链和人工智能方法,提出建立分级召回机制、完善技术评估体系、强化多方协同治理等改进策略。【结果】该策略不仅可以实现特种设备全生命周期数据的安全整合与存储,而且借助人工智能技术还可实现缺陷的自动化、实时化检测,达到提高信息透明度、提升检测效率与准确性的目的。【结论】这些策略为完善我国特种设备安全监管体系提供了理论支撑与实践参考,有助于提升特种设备的安全管理水平。

关键词: 特种设备; 召回制度; 龙门起重机; 区块链 DOI编码: 10.3969/j.issn.1674-5698.2025.06.015

Research on the Defect Recall System — Taking Gantry Cranes as an Example

XIA Xuwei^{1,2}

(1.Chongqing Special Equipment Inspection and Research Institute; 2. Key Laboratory of Electromechanical Equipment Security in Western Complex Environment, State Administration for Market Regulation)

Abstract: [Objective] To provide theoretical support and practical reference for improving China's special equipment safety supervision system, this study takes gantry cranes as the research object to systematically explore the construction and implementation mechanism of the defective product recall system, by focusing on the key links in the recall of China's special equipment safety management system. [Methods] By analyzing the current status of special equipment recall systems both domestically and internationally, and combining the unique structural characteristics and risk factors of gantry cranes, this study proposes improvement strategies based on blockchain and artificial intelligence methods, which include establishing a hierarchical recall mechanism, enhancing the technical evaluation system, and strengthening multi-party collaborative governance. [Results] The strategy not only enables secure integration and storage of data throughout the entire lifecycle of special equipment, but also achieves automated and real-time defect detection by utilizing artificial intelligence technology. It is meaningful for achieving the goal of improving information transparency, enhancing detection efficiency and accuracy.

基金项目:本文受中国特检协会政策与法律工作委员会项目"特种设备缺陷产品召回制度的研究"(项目编号: CASEI-RKT2024-31) 资助。

作者简介: 夏绪伟,硕士,高级工程师,研究方向为特种设备检验及型式试验。

[Conclusion] This paper provides theoretical support and practical reference for improving the safety supervision system of special equipment in China, and help to enhance the safety management level of special equipment.

Keywords: special equipment; recall system; gantry crane; blockchain

0 引言

龙门起重机作为现代工业生产的核心装备之一,广泛应用于港口、造船、重型机械制造等领域。其承载能力大、作业范围广的特点使其成为大型物料搬运不可或缺的设备。据统计,我国在用的龙门起重机数量已超过10万台,年产值达数百亿元,直接支撑着国民经济关键领域的发展。然而,龙门起重机结构复杂、工况恶劣,一旦发生事故,往往造成灾难性后果。例如,2019年某地一造船厂龙门起重机因小车主轴溜钩而出现安全事故,所幸未造成人员伤亡^[1]。类似事故暴露出龙门起重机在设计、制造、使用等环节存在的系统性风险,亟须建立科学有效的缺陷防控机制。

特种设备安全关乎公共安全与社会稳定,而 缺陷召回制度是预防重大事故的关键防线。现行 《中华人民共和国特种设备安全法》虽规定了缺陷 设备的召回义务,但在实践中存在诸多问题:一是 缺陷认定标准模糊,导致召回范围难以界定;二是 召回程序缺乏可操作性,企业往往选择隐瞒缺陷^[2]; 三是责任主体不明确,制造商、使用单位、检验机构 之间相互推诿。建立完善的缺陷召回制度,不仅 能够及时消除安全隐患,还能倒逼企业提升产品 质量,形成"预防为主、防治结合"的安全治理 模式^[3-4]。

目前, 欧美发达国家已建立了较为成熟的特种设备召回制度。以欧盟为例, 其CE认证体系要求制造商对设备全生命周期负责^[5], 并通过《机械指令》(2006/42/EC)明确了缺陷召回的量化触发标准。美国则依托OSHA(职业安全与健康管理局)建立了"自愿召回+强制召回"的双轨制, 并引入保险机制分担召回成本^[6]。相比之下, 我国特种设备

召回制度起步较晚,与发达国家存在以下差距:一是法律层级较低,缺乏专项立法;二是技术支撑不足,缺陷检测与风险评估能力薄弱;三是社会共治机制缺失,公众参与度低。这些差距严重制约了我国特种设备安全管理水平的提升。

1 缺陷产品召回制度现状

1.1 特种设备召回制度现状

特种设备安全监管研究近年来取得了显著进展,主要集中在监管模式创新、风险评估方法和技术支撑体系3个方面。在监管模式方面,岳庆利^[7]提出了针对特种设备的事故预防策略管理机制,强调通过信息化手段提升监管效率。范宏字等^[8]基于大数据分析构建了特种设备动态风险评估模型,实现了从静态监管向动态预警的转变。此外,区块链技术在特种设备安全监管中的应用逐渐成为研究热点。张莉君等^[9]设计了基于区块链的全生命周期追溯系统,有效解决了信息孤岛问题。然而,现有研究多集中于宏观监管框架设计,对具体设备类型(如龙门起重机)的针对性研究不足。

产品召回制度理论研究起源于20世纪60年代的美国,现已形成较为完善的理论体系。Man等^[10]从经济学角度分析了召回制度的成本效益,提出了"边际预防成本等于边际事故损失"的最优召回标准。张晓杰等^[11]结合中国国情,提出了"分级召回+信用约束"的制度设计框架,为特种设备召回提供了理论参考。近年来,研究重点逐渐转向召回制度的实施机制,如第三方评估机构的作用和召回成本分摊模型^[12]。然而,现有理论多基于消费品召回实践,对特种设备的适用性仍需进一步验证。

2025, No.6 STANDARD SCIENCE • Quality Management •

1.2 起重机械缺陷检测技术发展

起重机械缺陷检测技术经历了从传统方法到智能化的演进过程。早期主要依赖目视检查和超声波探伤,检测效率低且主观性强。随着技术进步,基于声发射 (AE) 和红外热成像的检测方法逐渐普及,能够有效识别裂纹、腐蚀等缺陷^[13]。近年来,人工智能技术的引入推动了缺陷检测的智能化发展。例如,张剑等^[14]开发了基于支持向量机的起重机主梁裂纹自动识别系统,准确率达到84.8%。此外,物联网技术的应用使得在线监测成为可能,李书强等^[15]设计了基于振动传感器的起重机健康监测平台,实现了缺陷的早期预警。然而,现有技术多集中于单一缺陷类型的检测,缺乏对多源缺陷的综合评估能力。

综上所述,现有研究在特种设备安全监管、召回制度理论和缺陷检测技术等方面取得了显著进展,但仍存在以下不足:(1)缺乏针对龙门起重机等特定设备的系统性研究;(2)召回制度理论研究与工程实践脱节,缺乏可操作性;(3)缺陷检测技术尚未与召回制度有效衔接,难以支撑分级召回决策。

本文以龙门起重机为研究对象,围绕缺陷召回制度的构建与实施展开系统性研究,主要内容包括:(1)龙门起重机缺陷特征与风险评估:分析典型缺陷类型及其失效机理,构建基于FMEA的缺陷风险评估矩阵,量化缺陷严重度与召回等级;

(2)缺陷召回制度现状与问题分析:对比国内外特种设备召回制度,揭示我国现行制度在缺陷认定、召回程序及责任划分等方面的不足;(3)召回制度优化设计:提出分级召回机制,设计基于区块链的全生命周期追溯平台,构建"政府主导+保险托底"的协同补偿机制;(4)实施路径与政策建议,提出制度实施的阶段性方案与配套政策,推动召回制度的落地与推广。

2 龙门起重机缺陷特征与风险分析

2.1 典型缺陷类型分类

龙门起重机作为特种设备,其安全性对于保障

生产作业至关重要。然而,由于多种原因,龙门起重 机在使用过程中可能产生多种缺陷,这些缺陷不仅 影响其性能,还可能带来严重的安全风险。

- (1)结构性缺陷。龙门起重机的桥架可能因长时间使用或不当操作而发生变形,进而影响起重机的整体稳定性。轨道的不平整、弯曲或跨度误差大也会导致车轮啃轨,加速车轮和轨道的磨损,严重时甚至引发脱轨事故。同时,焊接是龙门起重机制造过程中的重要环节,但焊接缺陷(如焊缝开裂、夹渣、气孔等)却时有发生。这些缺陷会降低结构的强度和稳定性,成为安全隐患。
- (2)材料性缺陷。龙门起重机的主要承重部件 (如主梁、支腿等)通常采用高强度钢材制造。然 而,如果材质本身存在缺陷,如夹杂、裂纹、偏折 等,将严重影响起重机的承载能力和使用寿命。此 外,龙门起重机长期暴露在室外环境中,容易受到 风雨侵蚀和日晒。腐蚀和老化会导致材料性能下 降,进而影响起重机的安全性和稳定性。
- (3)操作与维护风险。操作者技能水平不足、 违规操作或忽视安全规程都可能导致安全事故的 发生。例如,超重起吊、急停急启、斜拉斜吊等行为 都会加剧起重机的磨损和损坏。此外,缺乏定期维 护和保养会导致起重机性能下降,安全隐患增加。 例如,未及时更换磨损严重的车轮和轨道、未定期 检查焊接接头等都可能导致事故发生。
- (4)设计缺陷与适应性不足。部分龙门起重 机在设计上存在不合理之处,如单梁龙门吊的跨度 受限、起重能力不足等。这些设计缺陷限制了起重 机的适用范围和性能发挥。从作业环境上看,龙门 起重机对于作业环境的适应性有限。例如,在狭窄 或复杂环境中作业时,起重机可能无法充分发挥 其性能;在恶劣天气条件下作业时,起重机可能面 临更大的安全风险。

2.2 风险评估矩阵构建

FMEA(失效模式与效应分析)是一种系统化的方法,用于识别和分析产品或过程中潜在的失效模式及其影响。在龙门起重机缺陷风险评估中,可以借鉴FMEA的严重度(S)、发生频率(O)和探

测度(D)3个维度来构建风险评估矩阵,具体如表1所示。

表1 FMEA风险评估分级矩阵

10级: 致命缺陷, 导致安全性丧失或严重功能失效

9级: 很严重缺陷, 引起强烈不满, 部分功能 丧失

严重度(S) 分级

8级: 较严重缺陷, 引起不满, 功能下降

7级:一般严重缺陷,顾客不太满意,需修整

6级至1级:依次递减,直至无影响

10级:极高的失效概率

发生频率 (0)分级

9级: 与以往同类产品相比, 缺陷发生概率很高

8级至1级: 依次递减, 直至失效基本不会发生

探测度(D) 分级 10级:没有已知的控制方法能找出失效模式

9级至1级:依次递增,直至已知相似工艺的 可靠探测控制方法

3 缺陷召回制度的问题

3.1 国内外制度比较

在探讨缺陷召回制度时,国内外存在显著的差异和各自的特点。本文从欧盟CE认证体系下的召回机制、美国OSHA监管模式特点以及中国《特种设备安全法》实施现状3个方面进行比较。

欧盟CE认证体系要求进入欧洲市场的产品必须符合一系列健康、安全和环境保护的标准。该体系下,制造商需承担主体责任,确保其产品在设计、制造、检测等方面均符合相关指令要求。一旦发现产品存在缺陷,制造商需立即启动召回程序,以确保用户安全。欧盟市场监管部门会密切监督召回过程,并对持续违反指令要求的制造商采取严厉的法律措施。

美国职业安全卫生管理局(OSHA)负责监管 全美境内的职业安全卫生问题。其监管模式注重 事前预防,通过强制性措施、支持引导性措施和合作性措施与被管制企业形成良性互动。在缺陷召回方面,OSHA会依据相关法律法规对存在严重安全隐患的产品进行监管,并要求制造商及时召回。同时,OSHA还注重通过教育培训等方式提高企业和员工的安全意识。

《中华人民共和国特种设备安全法》旨在保障特种设备的安全运行,预防和减少事故。该法明确了特种设备生产、经营、使用、检验、检测等环节的监管要求。在缺陷召回方面,法律要求特种设备生产单位对其生产的特种设备的安全性能负责,一旦发现缺陷需立即召回。同时,市场监管部门会加强监督检查,对违法违规行为进行严厉处罚。

由此可见,国内外在缺陷召回制度方面存在显著差异。各国需根据自身实际情况,不断完善相关 法律法规和监管机制,以确保产品安全和保护消费者权益。

3.2 制度实施障碍分析

尽管各国已建立相应的缺陷召回制度,但相关 法律法规仍存在不完善之处。例如,《中华人民共 和国特种设备安全法》虽然对特种设备召回有明 确规定,但在具体执行过程中仍存在法律空白和 模糊地带,给监管带来困难。监管部门在资源、技 术和人员方面可能存在不足,导致对缺陷产品的 监管力度不够。此外,部分监管部门可能存在执法 不严、违法不究的情况,使得缺陷产品得以在市场 上流通。另外,部分企业对产品质量和召回责任的 认识不足,存在逃避召回、隐瞒缺陷等行为。这些 行为不仅损害了消费者权益,也破坏了市场秩序。

从获取信息途径上看,消费者与制造商、监管部门之间存在信息不对称问题。消费者往往难以获取关于产品缺陷的准确信息,导致召回行动难以有效展开。同时,制造商可能故意隐瞒缺陷信息,以避免召回带来的经济损失和声誉损害。

此外,在经济全球化背景下,跨境贸易日益增多。不同国家之间的法律法规、召回标准和程序存在差异,给跨境缺陷产品召回带来复杂性。此外,国际的法律协调和合作机制尚不完善,也给召回行

动带来挑战。

4 召回制度优化设计

4.1 制度框架重构

为克服现有召回制度的弊端,本文提出一种结合区块链和人工智能的特种设备召回制度,其主要过程如图1所示。

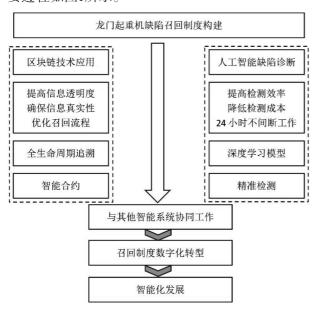


图1 所提出的缺陷产品召回制度框图

区块链技术在龙门起重机缺陷召回管理中的应用,为提升特种设备的安全性与监管效率带来了显著变革。借助区块链的分布式账本特性,龙门起重机可以安全整合与存储从设计、制造、销售、使用到检验维护的全生命周期的数据。这将涵盖政府监管机构、制造企业、检测检验机构及最终用户在内的所有相关方,能够在区块链平台上实时共享并访问这些至关重要的信息,确保数据的精准无误与即时更新。一旦发现龙门起重机存在安全隐患或设计缺陷,区块链平台能够即刻启动预警响应机制,迅速将缺陷信息传递给所有相关参与者。得益于区块链技术的高度透明性,这些数据一旦记录便永久不可修改,有效避免了信息的隐瞒或误导,保障了召回流程的公正性与透明度。更进一步,通过智能合约的自动执行,龙门起

重机的缺陷召回过程能得以高效地推进,包括向制造商、分销商及用户发送召回通知,指导他们迅速采取维修、替换或停止使用等必要措施。通过以上措施,可以达到提高信息透明度、优化召回流程的目的。

基于人工智能的龙门起重机缺陷检测方法融 合先进的数据采集、预处理、特征提取及机器学 习或深度学习技术。首先,可以通过安装在龙门起 重机上的传感器和监控系统实时收集运行数据, 这些数据经过清洗、去噪和归一化等预处理步骤 后, 提取出与缺陷相关的关键特征。随后, 利用这 些特征训练出能够准确识别龙门起重机缺陷的模 型,实现缺陷的自动化、实时化检测,这将显著提 升检测的准确性和效率。在此基础上,训练完成 的模型不仅能够快速识别龙门起重机是否存在缺 陷,还能提供详细的缺陷信息,如类型、位置和严 重程度等。结合设备的运行历史数据和故障模式, 模型还能进行故障诊断与预警,为设备的预防性 维护提供科学依据,从而有效保障龙门起重机的 安全稳定运行,延长其使用寿命,减少因故障导致 的停机时间并降低维修成本。

此外,基于区块链技术、人工智能和物联网的 缺陷产品召回方法能与其他智能系统很好融合, 这将有力促进召回制度的数字化转型,使特种设 备召回朝智能化方向发展。

4.2 关键技术支撑体系

基于物联网技术的缺陷监测系统,为产品在生产、运输、使用等全生命周期的实时监测提供了强有力的支持。该系统如果建成,将能够实时捕捉产品在不同阶段的状态数据,及时发现潜在的缺陷问题,从而大幅提高召回效率,确保产品在整个生命周期内的安全性。物联网技术的应用为召回制度的实施提供了坚实的技术后盾,使得缺陷产品的快速识别与召回成为可能。

为了进一步提升召回制度的精准性和效率,可 考虑建立全生命周期信息追溯平台。该平台集成产 品设计、制造、销售、使用等各个环节的详细信息, 可实现产品信息的全面可追溯。在缺陷召回事件发 生时,借助这一平台,可以迅速锁定问题产品的具体批次和流向,有效缩小召回范围,最大程度减少经济损失。全生命周期信息追溯平台已成为现代召回制度中不可或缺的重要组成部分。

为确保未来召回制度的公正性和有效性,计划引入第三方评估机构对召回过程进行监督和评估。这些机构将依据严格的认证标准,对召回措施的实施效果进行全面监测和客观评价,为召回制度提供独立、公正的第三方意见。第三方评估机构的参与,预计将增强召回制度的透明度,提升公众对召回行动的信任度,为未来构建更加完善、高效的召回机制奠定坚实基础。

4.3 法律保障机制

在召回制度的优化设计中, 法律保障机制是确保其有效实施的关键。首先, 需建立完善的法律法规体系, 明确召回的责任主体、程序要求、处罚措施等, 为召回工作提供坚实的法律基础。同时, 加大执法力度, 对违反召回规定的企业和个人进行严厉处罚, 形成有效的法律震慑, 保障召回制度的权威性和严肃性。

此外,还需构建多元化的法律救济渠道,保护消费者的合法权益。当消费者因缺陷产品受到损害时,应能够便捷地通过法律途径寻求赔偿。这包括建立专门的消费者维权机构,提供法律咨询、援助和仲裁服务,以及完善相关的诉讼程序,降低消费者的维权成本,提高维权效率。通过这些措施,共同构建召回制度的法律保障体系。

5 实施路径与对策建议

5.1 阶段性实施方案

为确保召回制度的顺利实施与有效推广,以下 从短期试点项目设计和中长期制度推广路径两方 面进行规划。

在短期阶段,可以计划设计并实施一系列试点项目,以验证召回制度的可行性和有效性。这些试点项目将涵盖不同类型的产品和行业,以确保制度的广泛适用性。选择具有代表性的企业和产品

作为试点对象,这些企业和产品应具备较高的市场占有率和消费者关注度。在试点过程中,密切关注召回制度的执行情况,收集企业和消费者的反馈意见,以便及时调整和优化制度设计。同时,建立专门的监测和评估机制,对试点项目的实施效果进行定期评估。评估内容将包括召回效率、消费者满意度、企业合规成本等方面。通过评估结果,可以及时发现问题并采取相应的改进措施,为后续的全面推广奠定基础。

在短期试点项目取得圆满成功之后,将进入 召回制度的中长期推广阶段。具体而言,首先拓宽 试点的边界,把更多种类的产品及行业纳入召回制 度的范畴,并积极增进与各国及地区的交流合作, 汲取国际上的先进经验,持续对召回制度进行完 善与优化。紧接着,加大宣传力度,致力于提升公 众对召回制度的认知度与信赖度,借助媒体宣传、 教育培训等多种手段,广泛传播召回制度的重要意 义,激发企业与消费者的主动参与热情。最终,致 力于建立健全的法律保障机制和监管体系,为召回 制度的顺畅执行与高效推广保驾护航。

5.2 配套政策建议

在完善特种设备召回制度方面,首先要明确召回责任主体,立法应规定生产单位(包括设计、制造、安装、改造、修理等单位)及从中国境外进口特种设备到境内销售的企业为召回责任主体。其次,要建立完善的特种设备召回制度,涵盖缺陷信息的收集、分析、调查与认定、召回实施及跟踪评估等环节,确保缺陷设备能及时有效召回并消除隐患。最后,要强化监管与处罚,赋予监管部门监督和管理职责,对未履行召回义务的生产单位进行处罚,并建立信息公开机制,提高召回工作的透明度和公信力。

政府应当加大对特种设备检测技术研发领域的投入力度,积极支持科研机构和企业深入探索前沿技术和共性技术。同时,还应鼓励企业强化技术中心建设,不断提升自身的自主创新能力;政府还应支持建设一系列国家级智能检测装备重点实验室、工程研究中心及创新中心等研发创新载

体,旨在加强产学研用之间的协同创新,进一步推动创新成果的转移与转化。

6 结论

本文对我国特种设备召回制度及起重机械缺陷检测技术的现状进行系统梳理,揭示了我国在缺陷认定、召回程序及责任划分等方面的不足,并提出了结合区块链和人工智能的特种设备召回制度优化设计方案。该方案利用区块链技术实现全生命周期数据的安全整合与存储,提高信息透明度;同时,借助人工智能技术实现缺陷的自动化、实时化检测,提升检测效率和准确性。此外,还提

出了制度实施的阶段性方案与配套政策,为召回制度的落地与推广提供了有力支持。

在后续研究方向上,提出3个值得探索的领域。一是智能起重机自诊断系统,通过人工智能技术实现起重机故障的实时监测和预警,以提高设备的安全性和可靠性。二是全球召回协作机制,加强国际合作与交流,共同应对特种设备安全问题,提升全球特种设备安全管理水平。这一方向有助于构建更加完善的国际召回体系,实现资源共享和优势互补。三是召回成本分摊模型,为特种设备召回制度的经济激励机制设计提供理论支持,促进召回制度的可持续发展。这一研究有助于平衡各方利益,确保召回行动的有效实施。

参考文献

- [1] 雷绍群:安全监控管理系统在一起起重机事故分析中的应用[J].市场监管与质量技术研究,2022(1):17–20.
- [2] 季一锦,孙浩翔,吴尽,等.特种设备缺陷产品召回制度研究[J].起重运输机械,2024(13):96-99.
- [3] 吴尽,季一锦,余军,等.关于建立缺陷起重机召回制度的探究[J].起重运输机械,2023(24):75-79.
- [4] 罗克研.《特种设备安全法》实施10年取得积极成效[J]. 中国质量万里行,2023(7):19-20.
- [5] 王峥.欧盟产品质量安全与缺陷产品召回法律法规及管理体系[J].质量与标准化,2012(4):22-24.
- [6] 冯小兵.对美国职业安全健康管理(OSHA)体系的思考与借鉴[J].山西建筑,2012,38(35):271-272.
- [7] 岳庆利.特种设备安全管理问题及事故预防策略研究 [J].品牌与标准化,2025(1):104-106.
- [8] 范宏宇,段军伟.大数据在特种设备检验和管理中的应用[J].中国设备工程,2025(1):156-158.
- [9] 张莉君,曹宏伟.基于区块链的特种设备数据共享交换

模型研究[J].中国特种设备安全,2025,41(1):47-50.

- [10] MAN M, MODRAK V, GRABARA J K. Marginal cost of industrial production[J]. Polish Journal of Management Studies,2011(3):61-68.
- [11] 张晓杰,王雅芸.探讨我国缺陷产品召回分级监管模式 [J].标准科学,2011(2):53-57.
- [12] DEAN D H, BISWAS A. Third-party organization endorsement of products: An advertising cue affecting consumer prepurchase evaluation of goods and services[J]. Journal of Advertising, 2001, 30(4): 41–57.
- [13] 陈育权,许浩,冯俊领,等.基于红外热成像技术的水电站 混凝土面板裂缝检测方法研究[J].混凝土,2024(2):180-
- [14] 张剑,周瑾,汤彤彤,等.基于EMD-SVM的起重机主梁裂 纹损伤识别[J].测试技术学报,2023,37(1):1-4.
- [15] 李书强,宋浩,焦松,等.一种起重机应力、振动监测系统研究应用[J].起重运输机械,2021(9):73-75.