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1   引 言

爆炸极限是表征可燃性气体（蒸气）燃烧爆炸

特性的重要参数之一，也是爆炸性气体环境风险预

警指标设定的主要依据。国内外相关学者多聚焦在

常温常压下可燃气体的爆炸极限研究, 针对高温高

压条件下可燃气体的爆炸极限研究相对较少。张欣

等
[1,2]

开展了5L、20L球式和管式爆炸极限测定装置

和判定标准对比研究，张小良等
[3]

分析了国内外爆

炸极限测试装置的研究现状，大部分装置适用于常

压或低压条件下的爆炸极限, 不能开展高温高压条

件下可燃性气体爆炸极限测试，并自行设计了1.5L

柱状耐10.0MPa爆炸极限实验装置。刘欣等
[4]

实验

研究了采油现场可燃气体混合物在40℃～60℃和

1MPa～10MPa下的爆炸极限，喻健良等
[5]

采用20L

球形爆炸实验装置研究了高温高压下CO2和N2对可

燃气爆炸极限的影响，上述研究均表明高温高压

试验条件对可燃气体的爆炸上限影响较大。Craven 

A D等
[6 ]

研究了80℃、120℃和150℃温度条件下

0.9MPa~3.5MPa压力范围内典型可燃气体的爆炸极

限，B.Vanderstraeten等
[7]

进一步研究了200℃以下

5.5MPa压力条件下甲烷混合气体的爆炸极限。

注空气采油过程中在地层高温高压环境下形成

的可燃混合气易引发火灾或爆炸事故
[4]

，化工生产

工艺过程也存在大量高温高压条件可燃性气体（蒸

气）聚集的场所或容器，如：2019年广西“10·15”

树脂合成反应釜爆炸事故，2018年宜宾“7·12”咪

草烟反应釜爆炸等。此外，近年来储能火灾爆炸事

故频发，如：“4.16”北京储能电站火灾爆炸事故，

美国UL 9540A《标准电池储能系统热失控的测试

方法》
[8]

要求测定高温高压条件下的锂电池热失控

气体的爆炸极限。可见，高温高压条件下可燃气体

爆炸极限的测定非常必要，对准确识别风险、科学

选择监测监控仪表、合理采用惰化抑爆等安全措施

具有重要意义。由于高温高压条件下可燃性气体或

蒸气的爆炸极限测定较常温常压下具有相当大的差

异，现有常压下爆炸极限测定装置及测定方法无法

满足测定要求，且点火方式、判定依据等完全不同，

有必要进一步规范高温高压条件下爆炸极限的测定

装置、测定方法，尤其是爆炸现象的判定依据。

2   测定方法标准对比

可燃气体（蒸气）爆炸极限是表征其爆炸可能

性浓度范围的重要参数，通常是在实验室标准规定

的实验环境和条件下进行测定，与气体混合的均匀

性、点火方式及能量范围、爆炸容器的几何形状和

尺寸等因素有关。按照标准规定的方法引燃可燃气

体（蒸气）和空气混合气后，即使未形成火焰传播，

也不能完全认为该混合气不会发生爆炸，通常所

测定的爆炸极限并非气体的固有属性，与实际爆炸

环境密切相关。爆炸极限可用于可燃气体危险性分

类，爆炸性环境允许可燃气体浓度及预警阈值的确

定、通风和供热系统计算以及受限空间作业、动火

作业时安全浓度的确定等。可燃气体爆炸极限是建

筑设计防火规范中生产和储存物品的火灾危险性

分类的重要依据，也是石油化工可燃气体检测报警

设计关键判定阈值。

关于爆炸极限的术语定义和说法不尽相同。我

国GB/T 12474《空气中可燃气体爆炸极限测定方

法》标准定义可燃气体和空气组成的混合气遇火

源即能发生爆炸的可燃气体最低浓度为爆炸下限

（lower explosion limit，LEL），最高浓度为爆炸上

限（upper explosion limit，UEL）
[9]

，爆炸现象的判

定以火焰传播情况判定。GB/T 27862-2011《化学

品危险性分类实验方法气体和气体混合物燃烧潜

力和氧化能力》定义与空气的均匀混合物在火焰刚

刚开始传播时的气体或气体混合物的最低浓度为

空气中可燃下限（lower flammability limit，LFL），

最大浓度为可燃上限（upper f lammability limit，

UFL），可燃低限与高限值之间的浓度范围称为“可

燃范围”，也被称为“爆炸范围”
[10]

。GB/T 21844

《化合物（蒸气和气体）易燃性浓度限值的标准实

验方法》定义为在测试条件下能使火焰在可燃物

和气态氧化剂的均相混合物中传播的最小可燃物

浓度为燃烧下限浓度（lower limit of flammability or 

lower f lammable limit，LFL），最大可燃物浓度为

燃烧上限浓度（upper limit of flammability or upper 

f lammable limit，UFL）。笔者认为，广义上讲爆炸

上限和爆炸下限测定时混合气体呈现燃烧状态，以

火焰传播方式、初始压力或温度提升量判定，与可
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燃范围、易燃性浓度限值等是一样的，建议统称为

“爆炸极限”。

对于常温常压下可燃气体爆炸极限测定标准

主要有GB/T 12474
[9]

、EN 1839
[10]

等，高温常压相关

标准包括GB/T 21844
[9]

、ASTM E681
[9]

和EN 1839
[9]

等；高温高压下爆炸极限测定标准主要是ASTM E 

918
[9]

，欧盟标准给出了高温高压条件下爆炸极限

的测定标准草案prEN 17624
[10]

，我国相关的标准

正在制定中。国内外可燃气体（蒸气）爆炸极限的

主要测定方法标准件见表1。

2.1  测定范围

从爆炸极限标准测定范围来看，常压下空气中

爆炸极限测定（GB/T 12474、GB/T 27262、USBM、

ISO 10156）没有给出温度范围，通常可以测定标准

大气压条件下室温至50℃可燃气体的爆炸极限。欧

盟防爆指令2014/34（ATEX）涉及爆炸性气体环境

中可燃气体和空气混合物的压力范围为0.0008MPa

和0.0011MPa，温度范围为-20℃至60℃，因此常

压条件下低温条件爆炸极限测定也十分必要。从

初始温度条件来看，可分为3个范围：室温至150℃

（GB/T 21844、ASTM E 681）、室温至200℃（DIN 

51649、EN 1829、ASTM E 918）和室温至400℃。目

前现行标准初始温度要求均在200℃以下，可满足

大部分工艺条件爆炸性气体环境测试要求。从初始

表1 现行爆炸极限测定方法标准比较

标准体系 测定方法 应用范围 测定装置 点火装置 判定标准

中国标准

GB/T12474-2008/
ISO 10156:1996，
NEQ

常压下空气中爆炸
极限

管式装置：硬质玻
璃反应管，管内径
60mm±5mm，管长1 
400mm±50mm，壁厚
≥2mm

电火花引燃，放电电极
距离底部≥100mm，间
距为3~4mm

目测火焰：火焰非常迅
速传播至管顶；一定的
速度缓慢传播

GB/T 21844-2008/
ASTM E 681:04，
IDT

室温至150℃和常
压下易燃性浓度极
限，燃烧上限LEL
及下限浓度UFL

5L/12L长颈玻璃瓶

中心点火：10mm长熔
丝；或电火花电极间隙
6~10mm；或高压电弧
6mm间距，30mA等；化
学点火引燃

目测观察火焰传播：到
达瓶壁或至少离器壁
13mm运动沿瓶壁传播
≥90°

GB/T27262-2011/
ISO10156:2010，
IDT

空气中可燃范围/
爆炸范围：可燃上
限、可燃下限

厚玻璃圆筒，内径
≥50 mm，高度≥ 300 
mm

火花发生器，电极间距5 
mm，10J/次

目测火焰是否通过反应
管传播，火焰分离并传
播，传播至少10cm为易
燃。氢气可采用温度测
量探针

美国标准

USBM法（U.S. 
Bureau of Mines）

常温常压（空气中
爆炸极限）

管式装置：柱形玻璃
管，管内径50 mm，长
度1 500 mm

底部电火花或明火引燃
目测火焰传播不低于
1.5m

ASTM E 681
常压高温（室温至
150℃）

球式装置：5 L球形玻
璃容器，内径222 mm

中心电火花引燃，
15kV，持续0.4s，约4J

目测不低于0.2m

ASTM E 918
高温高压（室温至
200℃，初始压力
不大于1.38MPa）

金属容器，容积V≥1 
L，内径D≥76 mm

115V电熔丝
初始压力提升量不低于
7%

欧盟标准

DIN 51649
常压，室温至200 
℃

管式装置：柱形玻璃
管，管内径60 mm，管
长300 mm

点火化引燃（5J），
15kV电极距离底部60 
mm，持续0.5 s

目测火焰分离

EN 1839
常压，室温至
200℃

管式装置：柱形玻
璃管，长度L≥300  
mm，内径D80±2mm
球式装置：球形或圆
柱形体积V≥5L，长径
比1~1.5

管式：高压电火花引
燃，持续0.2s，约2J球
式：10~20J熔丝，间距
5mm，截面2.5~7mm2

管式测定：目测火焰传
播0.1m
球式测定：初始压力提
升5%

prEN 17624
高温高压（室温
至400 ℃，常压至
10.0 MPa）

球形装置，1L、3L、
5L和10L

感应火花、表面间隙火
花或爆炸桥丝

不大于0.2 MPa时5%初
始压力，0.2MPa以上时
为2%初始压力，均不含
点火源的压力提升量
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压力条件来看，目前现行ASTM E 918标准可达1.38 

MPa，其余标准均为常压条件下测定。欧盟标准草

案EN 17624，初始温度提升至400 ℃，初始压力

(pi)提升至10.0MPa且分为0.1MPa≤pi＜0.5Ma、0.5 

MPa≤pi＜5.0Ma和pi≥5.0MPa，主要是测定表征初

始温度和初始压力对爆炸上限的显著影响。

2.2 测定装置

爆炸极限的测定装置 从容器形状来看，可以

分为管式装置（T）和球式装置（B，含圆柱形）。管

式测试装置如：GB/T 12474、GB/T 27262、USBM、

DIN 51649等，球式装置可为球形不锈钢爆炸罐、

圆柱形容器（长径比1至1.5）以及短环颈瓶等。从

测试装置容积来看，从1L、3L、5L、10L、12L、16 

L、20L和1000L不等，GB/T 12474、GB/T 21844、

USBM法、ASTM E 681、DIN 51649和prEN 17624

等规定了容器容积，GB/T 27262、ASTM E 918、EN 

1839等给出了最小容积限定，尤其是欧盟EN 1839

标准要求球形或圆柱形体积不低于5L。由于爆炸

容器表面冷却和焠熄效应，测试装置容器不可过小

（通常不低于5L），同时考虑高温高压初始条件下

爆炸的危险性，初始压力越高越应避免容器过小。

对于高温高压初始条件下测定，prEN 17624草案

对于初始压力0.5MPa≤pi＜5.0Ma时，测定容器不

小于3.0L，初始压力pi≥5.0MPa时测试容器不小于

1.0L，ASTM E 918也要求不小于1.0L。笔者建议采

用5L、12L和20L测试装置，目前国内比较常用，也

便于相关测定数据比对。此外，建议测定装置和安

装在爆炸容器上的附件，如：阀门、点火器、压力和

温度传感器等应能够承受不低于15倍初始压力的

最大超压；若测定氧化能力高于空气的氧化剂混合

物，则测试容器和设备应能承受不低于30倍于初始

压力的最大超压。

2.3  测定原理

在给定的初始温度和初始压力条件下，将一定

体积分数的可燃气体（蒸气）与空气预先混合于爆

炸反应容器内，以电火花或电热丝等点火器引燃，

通过判断是否发生爆炸现象，系统地改变可燃气体

（蒸气）的浓度直至测得发生爆炸的最低、最高浓

度。对于可燃气体充入通常采用分压法进行配气，

高温高压条件下可燃气体充入理论上分压法不适

用，通常先测定常温常压下的爆炸极限，然后逐步

升温升压，建议升温级差应不大于50 ℃，升压级差

应不大于0.1MPa。

2.4 点火方式

高温高压条件下的点火装置通常要求比常温常

压下的性能高，一些普通点火源在高温高压条件下

较难引燃可燃气体混合物，通常采用高能电火花或

高温热丝引燃，且其引燃能量足够引燃可燃气体，

并对混合气体爆炸压力的提升作用影响不大，以免

影响爆炸现象的判定。

点火装置推荐采用电火花、电熔丝或高温热丝

等引燃。高温高压条件下爆炸极限测定往往出现普

通点火花引不燃现象，与电离空气的密度有关，需

要较高的能量。目前点火源能量不好标定，按电点

火源电流和电压等计算确定的能量并非全部贡献

于引燃爆炸性混合气体，且不确定性较大，不易给

出点火源能量范围，且能量过大对爆炸现象判定

有影响。高温高压条件下爆炸现象识别通常以初始

爆炸压力提升量来判定，点火源不可对初始压力

提升量贡献过大，否则在压力提升量判定中应减

去点火源本身的贡献量。目前涉及高温或高压状态

爆炸极限测定的标准，常压高温ASTM E 681和GB/

T 21844推荐采用电火花（间隙6~10mm）、高压电

弧（6mm间隙，30mA）或化学点火，EN 1839推荐

采用高压电火花（持续0.2s）或电熔丝，ASTM E918 

推荐N-12Y火花塞，prEN 17624推荐采用电火花、

电熔丝、熔爆桥丝等。笔者认为不应限制点火源类

型，可对点火源初始压力贡献量进行限制，或者初

始压力提升量中减去点火源引起的压力增量。高温

高压下点火源的选择是一个复杂问题，对爆炸现象

本身判定又影响比较大，在测试装置调试过程中需

要不断改进和完善。

2.5  判定依据

爆炸现象判定的重要依据是火焰传播，常温常

压下爆炸极限测定方法如：GB/T 12474以目测火焰

传播情况来判定；对于常压高温爆炸极限测定，我

国GB/T 21844和美国标准ASTM E 681均采用目测

或视频图像判定火焰传播角度判定，欧盟标准EN 

1839管式法采用目测观察火焰传播来判定（如图1

所示），球式法采用爆炸压力增量（初始压力5%提
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升）来判定。火焰分离传播至少100mm，若形成火

焰光环（晕）需要传播到测定容器顶部或至少传播

至240mm。对于高压高温条件下火焰传播判定不便

观测，通常以爆炸过程压力增量和温度增量来判

定，ASTM E 918以始压力提升量不低于7%来判定，

欧盟标准草案prEN 17624判定更为详细，如式（1）

所示。

pi≤2时，pex/pi≥1.05+pIS/pi-1

pi＞2时，pex/pi≥1.02+pIS/pi-1

或ΔT≥100℃                                           （1）

式中，pi为测试初始压力，pex为测试过程的最

大爆炸超压，pIS为点火源本身导致的超压，ΔT为

爆炸过程导致的温度提升。

图1   火焰分离和火焰光环（晕）

笔者建议以爆炸压力提升量判定为主，辅助爆

炸过程温度提升量，对于一些低可燃气体，如：氨

气等，压力提升量不明显，可采用爆炸温度提升量

来判定，需要大量实验测试进行数据比对验证，以

确定爆炸现象的判定阈值。文献测试结果表明，

无论采用何种爆炸现象判定标准（如：目测火焰传

播，3%、5%或7%初始压力提升等），甲烷和丙烷的

爆炸极限范围是一致的，对于高可燃性气体（如：

氢气）的测试结果差异显著。

3   结论和建议

（1）可燃气体（蒸气）爆炸极限标准测定方法

是基于实验室规定条件下的可燃性浓度范围测定，

对于爆炸性气体环境实际工况需要进行危险性识

别和评估分析。可燃气体爆炸极限测定应给出依据

的测定标准、测定装置形状及容积、点火方式等重

要影响因素。

（2）爆炸极限测定装置分为管式装置和球式

装置，管式装置以火焰传播目测为主，球式装置以

爆炸压力提升量判定为主。对于高温高压条件下

爆炸极限测定，相关标准均给出了测定装置的最

小容积，情况允许宜采用较大容积进行测定，安全

区间压力越高越应选择较大容器测定，均不应小

于1.0 L。

（3）可燃混合气体的引燃方式和引燃能量对

爆炸极限的测定尤为重要，球式测定装置现行标

准以3%、5%和7%初始爆炸压力提升量作为判定依

据，对于低可燃气体和无火焰的可燃气体应采用温

度提升量来判定，需要进行实验验证以确定温度判

定阈值。建议针对测定的初始压力和初始温度，建

立低压、中压和高压爆炸现象判定标准，并考虑点

火源对初始压力的贡献量。

（4）高温高压条件下爆炸极限测定过程中，要

识别评估分析化学不稳定性气体或各组分相互间

会发生反应的混合气体危险性，一些卤烃类气体高

温分解可能导致爆炸极限范围突变。同时，要采取

足够的安全措施并做好个人防护。

（下转第100页）
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